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Abstract

Review Article

Introduction

Bone formation involves hydroxyapatite [Ca10(PO4) 6(OH)2] 
crystals, whose development begins in matrix vesicles (MVs) 
that bud from osteoblasts. Vascular smooth muscle 
cells (VSMCs) that have undergone osteoblast differentiation 
are also able to release similar vesicles with shared protein 
content.[1] Such differentiation is restrained or inhibited under 
normal conditions, and there is a balance with osteoclast 
differentiation experienced by monocytes and macrophages 
within the vascular wall. Moreover, the reaction which 
allows crystal growth is thermodynamically unfavorable 
and is inhibited by Calcification Inhibitors.[2] In some 
situations, physiological balance is broken and vascular 
calcification (VC) is able to progress. Occurrence of VC is 
not new. It has been discovered in the “Iceman” who lived 
5000 years ago,[3] and thscientists had already paid attention 

to this phenomenon and to its relation with renal disease in the 
19th century.[4] VC occurs when vessel and/or valvular tissue 
becomes mineralized. Conventionally, calcification has been 
classified depending on where the calcium was deposited. In 
this way, arterial calcification has been divided into intimal 
calcification  (associated with atheromatous plaques[5]) and 
medial calcification (known as Mönckeberg’s sclerosis) linked 
to vascular stiffness due to the mineralization of elastic fibers 
and atherosclerosis seen with age, diabetes, and chronic kidney 
disease (CKD).[6] Calcification of the intimal layer is reflective 
of atherosclerotic heart disease. Calcium deposition in the 
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intimal layer of the coronary arteries  (known as coronary 
artery calcification) can lead to vascular occlusion. It is 
detectable in ~30% of adults without clinical CVD[7‑10] and 
is incrementally predictive of future cardiovascular events 
and overall mortality, independent of traditional CVD risk 
factors.[11‑13] Certain patient groups, especially those with CKD, 
are at greater risk for coronary artery calcification.[14‑16] In 2004, 
it was determined that 11% of the general population in the 
United States had CKD, translating into >19 million affected 
people.[17] CKD is defined as the presence of kidney damage 
with or without reduced kidney function.[18] The severity of 
CKD is determined by a staging process that is based on 
an estimated glomerular filtration rate. Moderate to severe 
CKD (Stages 3–5) is represented by an estimated glomerular 
filtration rate of < 60, <30, and <15 mL/min, respectively, and 
Stage 5b encompasses those individuals who require a form 
of kidney replacement therapy (hemodialysis [HD], peritoneal 
dialysis, or kidney transplant).[18]

At every stage of CKD, the leading cause of mortality is 
CVD and patients are more likely to die of a cardiac event 
than they are to ever require a form of kidney replacement 
therapy.[19] CKD patients are particularly prone to medial 
calcification  (known as Mönckeberg’s sclerosis), which 
leads to arterial stiffening, elevated systolic pressure, and 
increased cardiac workload.[20,21] Medial calcification is 
predictive of cardiovascular and all‑cause mortality in CKD 
patients, independent of intimal calcification and CVD 
risk factors.[22,23] Calcific uremic arteriopathy, also known 
as calciphylaxis, classically manifests as calcification of 
cutaneous and subcutaneous arteries with occlusive intimal 
proliferation and subsequent fat necrosis.[24] VC increases with 
age and is notably dysregulated in diabetes, dyslipidemia, 
renal disease, and hypertension.[2] Although the cellular and 
molecular events leading to calcium deposition in vascular 
tissue continue to be explored, it is understood to be a highly 
regulated process.

Mechanisms of Vascular Calcification

VC is a pathologic response to toxic stimuli involving metabolic 
substances and/or inflammatory cells.[25‑29] Historically, VC 
was considered to be a passive process, the result of Ca2+ and 
P ions exceeding solubility in tissue fluid, thereby inducing 
the precipitation and deposition of hydroxyapatite crystals.[30] 
However, the current thinking has shifted away from this passive 
theory; VC formation is now considered a complex, actively 
controlled intracellular molecular process, involving the 
differentiation of macrophages and VSMCs into osteoclast‑like 
cells, similar to that which occurs in bone formation.[26,31‑33] 
The underlying pathophysiological mechanisms resulting 
in VC can be broadly described as (1) elevation in serum 
Ca2+ and P levels, (2) induction of osteogenesis, (3) inadequate 
inhibition of the mineralization process, and (4) migration and 
differentiation of macrophages and VSMCs into osteoclast‑like 
cells.[26,31,32,34] Genetic predisposition certainly plays an 
important role in the genesis of this phenomenon.[30] According 

to Rutsch et al., 40%–50% of cases of coronary calcification 
can be attributed to genetics.[35] Genes ENPP1 and NT5E are, 
respectively, implicated in infancy and idiopathic VC. The first 
one encodes a protein which transforms ATP to adenosine and 
PPi (inhibitor of calcification) whereas the second one converts 
adenosine monophosphate into adenosine and inorganic 
phosphate (Pi, accelerator of mineralization).[36]

The VC phenotype caused by mutations in these genes underlines 
the role of PPi and Pi in pathogenesis.[2] Mutations in ABCC6, 
a gene encoding a nucleoside‑sensitive transporter, have also 
been linked to hereditary calcification.[36] Alternative action of 
ABCC6 may include deficient hepatic production of inhibitory 
factor of matrix Gla protein (MGP), an important inhibitor of 
calcification.[2,37] Another major mechanism of development 
of VCs is similar to that of bone formation[36]  [Figure  1]. 
First, VSMCs undergo osteogenic differentiation into 
phenotypically distinct osteoblast‑like cells.[34,38] In case 
of renal failure, Pi plays a key role in this mechanism.[39,40] 
In vitro, high extracellular Pi concentrations induce a rise 
in intracellular Pi concentration which is actively mediated 
by Pit‑1, a sodium dependent Pi cotransporter.[40,41] This 
increasing Pi concentration in the VSMC induces a phenotypic 
switch of VSMCs into osteoblast‑like cells.[34,40,42] The protein 
core‑binding factor subunit 1α/runt‑related transcription factor 
2 (Cfba1/Runx2) is a specific and indispensable transcriptional 
regulator for this osteoblastic differentiation.[36] Its expression 
is also enhanced with high extracellular Pi.[40,42,43] These 
new cells will express alkaline phosphatase (ALP), secrete, 
under the control of Cfba1, bone‑associated proteins (such as 
osteopontin [OPN],[44] collagen type 1, osteoprotegerin [OPG], 
bone morphogenetic protein‑2  [BMP‑2] and osteocalcin 
[OC][40,45]), and release mineralization‑competent MVs in the 
extracellular matrix.[39,40,46] VSMCs release MVs under normal 
physiological conditions and these MVs are protected from 
mineralization by the presence of calcification inhibitors.[36] 
Under pathological conditions, a combination of factors makes 
the MVs mineralization competent.[47] Moreover, an increase of 
intracellular Pi level mediated by Na/Pi transporter is thought 
to induce VSMC apoptosis through an unclear process that 
possibly involves a disruption in mitochondrial metabolism.[48] 
Some studies suggest that apoptosis leads to calcification.[49‑51] 

Figure  1: Schematic diagram depicting multiple mechanisms leading 
to vascular calcification
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The MVs, in which pro‑apoptotic factor BCL2‑associated X 
protein has been identified,[52] may be remnants of apoptotic 
cells. As MVs have the capacity to concentrate and crystallize 
calcium, apoptosis could be a key regulator of VC.[48] More 
recently, a different point of view has emerged according 
to which phenotypically distinct osteoblast‑like cells might 
originate from stem cells rather than VSMCs.[36] A new 
mechanism called “circulating cell theory,” suggesting an 
active role for circulating cells arising from sources such as 
bone marrow, has been postulated to contribute toward VC.[36]

Under the influence of chemoattractants (released by damaged 
endothelium for instance), these bone marker‑positive cells 
may home to diseased arteries. Under pathologic conditions 
such as an imbalance between promoters and inhibitors of VC, 
this population may further undergo osteogenic differentiation 
in the lesions, which could promote vessel mineralization.[36,53] 
Another recent study has also claimed that multipotent 
vascular stem cells present in the blood vessel wall might 
differentiate into osteoblast‑like cells.[54] Nevertheless, this 
point of view is still very controversial. Although the role of 
Pi is well established in osteoblastic differentiation process, 
many other factors can influence this phenotype conversion 
and accurate causal mechanisms remained not completely 
understood.[36] Under normal conditions, VSMCs produce 
endogenous inhibitors of calcification such as MGP, OPN, 
OPG, and PPi.[29] A long‑term exposure of VSMCs to a variety 
of stresses can overwhelm the action of these inhibitors and 
induce differentiation.[47] Among these chronic stresses, ionic 
disorders (especially hyperphosphatemia and hypercalcemia) 
are incriminated, but inflammation, hormonal perturbation, 
metabolic disorders, and oxidative stress can also lead to 
VC.[36] Oxidative stress in VSMCs, in particular generated by 
hyperlipidemia and oxidized lipoproteins or uremic milieu,[55] 
causes the expression of Runx2,[56] osterix and governs Wnt 
signaling,[57] leading to osteogenic differentiation. Inflammatory 
cytokines, such as tumor necrosis factor‑alpha (TNF‑α), can 
also induce calcification through Msx2/Wnt/β‑catenin 
pathway.[58] In support of that, calcium deposits colocalize 
with inflammatory cells in vitro[59,60] and in vivo.[61] Moreover, 
it has been suggested that mineral crystals may themselves be 
pro‑inflammatory, creating a vicious cycle of inflammation 
and calcification.[62,63] The receptor for advanced glycation 
end products (RAGE) endogenously expressed in endothelial 
cells and its ligands (in which S100 family proteins are found) 
is also known to be involved in atherosclerotic formation 
and VC.[36] It has been suggested that galectin‑3 and RAGE 
modulate vascular osteogenesis in part through Wnt/β‑catenin 
signaling.[64] Several trials have shown a raise in serum levels 
of S100/calgranulins in vascular disease.[65,66] Thereby, S100 
proteins could be a potential biomarker and therapeutic target 
to develop.[2] Involved in the control of both parathyroid 
hormone (PTH) and calcitonin secretion, the calcium‑sensing 
receptor (CaSR) is a G protein–coupled cell surface receptor 
that is able to sense extracellular calcium ions. Evidence has 
been provided to demonstrate that a decrease in the CaSR 

protein expression in the vasculature is directly involved in 
the development of VC.[67,68]

It is of particular interest to note that calcimimetics, which are 
allosteric drug compounds that selectively target the CaSR, 
decrease VC at least in part through local control of the CaSR 
expression in VSMC.[69,70] However, so far, the mechanism 
whereby the CaSR exert its protective effect remains largely 
unknown. Hormones have pleiotropic effects on calcific 
vasculopathy. For example, the adipose‑derived factor, leptin, 
promotes VC in vitro[71] and in vivo.[72] Adiponectin‑deficient 
mice have increased VC.[73] The influence of PTH is a part 
of bone turnover process.[36] A disruption between promoters 
and inhibitors can also generate VC. Moreover, similar to 
bone formation, there might a balance between VC and its 
resorption. Indeed, monocytes and macrophages contained 
in the calcified wall can differentiate into an osteoclast‑like 
phenotype and counteract the action of VSMCs that have 
undergone osteoblast differentiation.[74] Hyperphosphatemia 
would disadvantage osteoclast phenotype by downregulating 
receptor activator of nuclear factor‑kappa B  (NF‑κB) 
ligand  (RANKL)‑induced signaling,[75] but this is not clear 
whether osteoclast‑like cells can really counteract VC or 
solely witness vascular remodeling process.[36] All these 
modifications will favor for an optimal microenvironment for 
hydroxyapatite formation and calcification. Similar osteogenic 
differentiation is also observed, in vivo, in animal and human 
uremic models.[38,42,76]

Biomarkers

Calcification inhibitors
Under normal conditions, blood vessel cells express 
mineralization‑inhibiting molecules.[77] The loss of their 
expression, as happens in CKD, causes what is known as “loss 
of natural inhibition,” giving rise to spontaneous calcification 
and increased mortality.[77] A list of these calcification‑inhibiting 
molecules has been drawn up after mutation analysis on mice, 
including among others.

Fibroblast growth factor‑23 and Klotho
Fibroblast growth factor‑23  (FGF‑23) is an approximately 
30 kDA protein released by bone that requires the presence 
of the cofactor Klotho for its classical effects.[36] FGF‑23 
promotes Pi excretion by reducing its proximal reabsorption 
by reducing the expression of NPT2a and NPT2c mRNA, 
sodium/Pi transporters.[78] FGF‑23 also decreases conversion 
of calcidiol into its active form by reducing 1α‑hydroxylase 
activity.[79] Thereby, gastrointestinal absorption of calcium 
and Pi is reduced. In parathyroid glands, FGF‑23 decreases 
PTH secretion and parathyroid cell proliferation.[80] FGF‑23 
null mice develop hypercalcitriolemia and VC.[36] Although 
the mechanistic link remains to be explained, FGF‑23 may 
serve as a novel risk marker for the cardiovascular mortality 
in CKD.[79] In patients with coronary artery disease (CAD), 
the same independent link between FGF‑23 and mortality has 
been demonstrated.[81] In contrast to FGF‑23, Klotho excess has 
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never been shown to be noxious.[82] Interestingly, Klotho levels 
are upregulated by Vitamin D receptor agonists (calcitriol or 
paricalcitol) in CKD mice submitted to a high Pi diet. These 
mice show half less calcification than those who did not receive 
therapy. Phosphaturia is increased whereas phosphatemia and 
FGF‑23 levels are lowered.[83] In contrast, vascular Klotho 
deficiency favors the development of arterial calcification and 
mediates resistance to beneficial vascular effects of FGF‑23.[82]

Fetuin‑A
Fetuin‑A (Fet‑A) is a serum 59‑kDa glycoprotein that inhibits 
ectopic VC,[77] produced by the liver that possess a systemic 
action.[84,85]

It is a powerful inhibitor of hydroxyapatite formation, reducing 
the formation of crystals in in  vitro solutions containing 
calcium and phosphorus without affecting those that are 
already formed.[77,86] Mice that are deficient in this protein 
develop extensive calcifications in soft tissue such as the 
myocardium, kidneys, tongue, and skin.[87] Fet‑A is thought 
to inhibit calcification by binding early calcium Pi crystals 
and by inhibiting crystal growth and mineral deposition.[36] 
This could be facilitated by the formation of large calciprotein 
particles  (CPPs).[86,88] Indeed, the accumulation of naked 
calcium Pi crystals is responsible for extraosseous calcification 
and causes inflammation. These crystals are usually digested 
by the cells of the reticuloendothelial system such as 
macrophages. In contact with the crystals, macrophages secrete 
pro‑inflammatory cytokines and undergo more apoptosis.[36] 
The formation of Fet‑A CPP facilitates the clearance of these 
crystals and thereby reduces their negative impact. Fet‑A 
likely plays a very important role in the stabilization of 
these complexes and reduces the inflammatory response.[36] 
Fet‑A binds and sequesters insoluble mineral nuclei, forming 
soluble colloidal CPP, thereby inhibiting crystal growth 
and aggregation.[36] Macrophages secrete less cytokines and 
undergo less apoptosis phenomenon as compared to reactions 
caused by naked crystals. This property of Fet‑A to decrease 
inflammation may be influenced by the phosphorylation 
degree of the glycoprotein.[89] In these studies, lower serum 
Fet‑A concentrations have been associated with increases in 
calcification scores, arterial stiffness, mortality, and incidence 
of cardiovascular events.[90‑94]

Osteopontin
OPN is a phosphoprotein that is usually found in mineralized 
tissue such as bones and teeth.[77,95] It inhibits mineralization 
by blocking hydroxyapatite formation and activating osteoclast 
function.[96] Although it is not found in normal arteries, 
its expression is detected in atherosclerotic plaques and 
calcified vessels. OPN knock‑out mice do not develop VC, 
but when these mice are bred with MGP knock‑out mice, 
the VCs are more important than in simple MGP knock‑out 
mice.[97] OPN must be phosphorylated to act as a calcification 
inhibitor.[36,98] OPN inhibits mineralization of VSMC by 
binding to the mineralized crystal surface.[99] On the contrary 
to the fully phosphorylated OPN, cleaved OPN could act as 

a pro‑inflammatory cytokine and a pro‑angiogenic factor 
facilitating vascular mineralization.[96,100]

The possibility that OPN could serve as a calcification serum 
marker is controversial.[36] Berezin and Kremzer showed that 
OPN was a good predictor of coronary calcification in type II 
diabetes mellitus patients.[101] Tousoulis et al. found a positive 
association between OPN and arterial stiffness in CAD.[102] 
Indeed, the discrepancy between the different studies may 
perhaps be explained by the differences in patient populations. 
It is thought that OPN plays a key role in inflammatory 
process.[36] Its relation with diseases related to inflammation 
such as atherosclerosis, obesity and autoimmune diseases has 
already been shown.[96,103‑106] It has also been suggested that 
hyperglycemia could upregulate OPN and thereby lead to 
VSMCs proliferation.[107]

Osteoprotegerin
OPG is a member of the TNF receptor family that has been 
identified as a regulator of bone resorption.[108] OPG is 
produced by many tissues, including cardiovascular system, 
lungs, kidney, and immune system.[109] OPG is a regulatory 
factor produced by bone marrow‑derived stromal cells.[36] 
OPG plays a pivotal role in the regulation of the bone turnover, 
inhibiting osteoclast differentiation and acting as a decoy 
receptor for the RANKL system.[110] It interferes with the 
interaction between RANK  (expressed by osteoclast‑like 
cells) and RANKL  (expressed by osteoblast‑like cells). 
OPG is also thought to inhibit ALP activity.[111] OPG levels 
are significantly higher in CKD patients, in relation to the 
severity of renal failure. Although OPG is known to impede 
osteoclast differentiation in bone, OPG is usually considered as 
a protective factor against VC as it blocks the bone remodeling 
process in the vascular tissue.[36] OPG is also a neutralizer of 
the pro‑apoptotic actions of TNF‑related apoptosis‑inducing 
ligand, which strongly activates vascular cells apoptosis.[112] 
Apoptotic bodies can also lead to mineralization. In support of 
that, it has been observed that OPG‑deficient mice do develop 
both severe aortic calcifications and osteoporosis.[113,114] 
Interestingly, OPG seems to be a marker of VC onset rather 
than a severity or progression predictor.[36,115]

Osteocalcin
OC, a Vitamin‑K‑dependent matrix protein that inhibits 
calcium salt precipitation in vitro,[116] shows a strong affinity 
for hydroxyapatite.[36] OC has been found in calcified 
atherosclerotic plaques and calcified aortic valves.[117] It was 
generally thought that OC inhibits crystal growth[118] and 
limits bone formation.[119] Nonetheless, its utility as serum 
marker is still discussed in conflicting studies. Aoki et al.[120] 
did not show any relationship between OC and VC in type 
II diabetes mellitus patients whereas Kim et al.[121] found an 
inverse correlation between OC and Agatston calcification 
score in Asian women, even after adjusting for age.[36] To 
define if OC can be used as a diagnostic or a screening tool, 
the role of OC in the pathogenesis of VC clearly remains to 
be clarified.



Melaku and Mossie: Molecular mediators and controlling mechanism of vascular calcification

International Journal of Clinical and Experimental Physiology  ¦  Volume 4  ¦  Issue 1  ¦  January-March 2017 7

Pyrophosphate
PPi is a small molecule made of two Pi ions.[36] It acts as a 
calcification inhibitor by inhibiting hydroxyapatite crystal 
formation.[122] Once again, knock‑out mice (in fact, knock‑out 
mice for a precursor) develop VCs.[123] Absence of PPi would 
promote VSMC differentiation, but the mechanism is not fully 
understood.[124,125] O’Neill et  al. demonstrated the negative 
association between PPi and VC in CKD.[126] Although the 
short half‑life of PPi limits the possibility for improving VC 
by bolus injections, daily peritoneal dialysis achieved with a 
solution which contains PPi in CKD mouse model do succeed 
in inhibiting calcification.[127] O’Neill et al. demonstrated that 
daily intraperitoneal injections in rats could also reduce both 
incidence and amount of calcification.[128] PPi has been shown 
to inhibit mineralization on rat aortic VSMCs cultures too.[129] 
Furthermore, bisphosphonates, nonhydrolysable analogs of 
PPi, have also proved their ability to inhibit aortic calcifications 
in experimental renal failure rats. Calcification was stopped 
in cultures of rat aortas as well as in vivo model.[36] It supports 
the idea that bisphosphonates have direct effects on VC, 
independent of bone,[130] maybe through a downregulation 
of Notch1‑RBP‑Jκ signaling pathway and MsX2 gene 
induction.[131] ATP, which is a polyphosphate associated 
with nucleoside, might also act as calcium Pi deposition 
inhibitor, not only as the source of PPi but also as a direct 
inhibitor.[132] Even if PPi seems to be a promising marker, its 
determination has been performed in a single center only and 
the transferability to other centers should be validated.

Matrix Gla protein
MGP is a Vitamin K, 14‑kDa γ‑carboxylated protein 
expressed by chondrocytes, VSMCs, endothelial cells, and 
fibroblasts.[36] Its role as a calcification inhibitor has been 
illustrated by MGP knock‑out mice that develop extensive 
arterial calcifications.[133,134] In 2002, Moe et al. demonstrated 
a correlation between vascular MGP expression and the 
calcification of epigastric arteries in dialysis patients.[76,135] 
MGP‑deficiency in humans leads to Keutel syndrome, a 
rare genetic disease hallmarked by abnormal soft tissue 
calcification.[134] MGP binds calcium crystals, inhibits crystal 
growth, and plays a role in the normal phenotype of VSMCs 
in preventing the osteoblastic differentiation.[43,136] MGP also 
binds and inactivates a pro‑mineralization factor, BMP‑2.[137] 
Among other effects, BMP‑2 promotes osteogenic conversion 
of VSMCs through MSX2 transcription factor.[36] MGP could 
also protect mineral nucleation sites on elastin and thereby 
prevent spontaneous calcification of the elastic laminae.[36] In 
support of that, the irregular calcification of the thoracic and 
abdominal aorta segments in MGP −/− mice correlates with 
the local variations of the elastin content.[134] Parallel to this 
study, other authors hypothesized a mineralization process by 
size exclusion, in which MGP proves to be essential to prevent 
mineralization within fibrils.[36]

Calcification activators
There are studies that speculate that,  as well  as 
hyperphosphatemia and hypercalcemia, there are substances 

present in the blood serum of patients with CKD capable of 
stimulating calcification.[38] Bovine VSMC in the presence of 
uremic serum increases the expression of calcification‑related 
proteins. A large number of uremic factors have been identified 
that are capable of inducing osteogenic genes, transforming 
osteoblasts, and secreting some bone matrix proteins in the 
walls of blood vessels and soft tissue. Some of these factors 
are TNF,[59] inflammatory cytokines,[138] fibronectin,[139] type‑I 
collagen,[139] and 25‑hydroxycholesterol.[140] These uremic 
serum substances stimulate the expression of molecules 
essential to vesicular calcification.

Alkaline phosphatase
ALP is one of the osteoblastic phenotype markers and is 
considered essential in the VC process.[77] It has been detected 
in vascular and heart valve calcifications. ALP expressed on 
the surface of cells can act on Pi liberators, releasing inorganic 
Pi.[141] Inflammatory cytokines and Vitamin D induce its 
upregulation and mineralization.[141,142]

Core‑binding factor alpha 1
Core‑binding factor alpha 1  (Cbfa1) is the main regulator 
of bone cell differentiation.[77] Cbfa1‑deficient mice have 
problems with cartilage formation and bone mineralization.[143] 
It acts as a transcription factor that accelerates the expression 
of important osteoblast lineage genes such as OC, OPN, ALP, 
or type‑I collagen.[144] Its expression is upregulated by Pi43 
and uremic toxins.[38]

Bone morphogenetic protein‑2
BMP are a group of, at least, 30 proteins that receive their 
name from their osteoinductive properties.[77] BMPs belong 
to a subdivision of TGF‑β‑like growth factors family. BMPs 
regulate growth, differentiation, and development in the 
embryo as well as during tissue remodeling processes in 
the adult organism. BMP‑2 is an important molecule in the 
regulation of bone formation as well as in VC.[36,77] In bone, 
it promotes osteoblast differentiation and mineralization.[145] 
Inhibition of BMP‑2 inhibits osteoblast differentiation and 
bone formation in vivo and in vitro[146] and protects against 
atherosclerosis and VC.[147] They act by binding to a 
heterodimeric system of transmembrane receptors  (BMP‑1 
and BMP‑2 receptor) that trimerises upon binding. The binding 
of a BMP to its specific type II receptor results in the type 1 
receptor being activated. This causes phosphorylation and 
nuclear translocation of the Smad transcription factors, thus 
modifying the transcription rate of target genes.[148] They then 
induce ectopic bone formation.[149]

Sclerostin
Sclerostin is an osteocyte‑specific glycoprotein and is considered 
as a potent inhibitor of bone formation.[150,151] It inhibits 
specific coreceptors needed for β‑catenin‑dependant signaling 
activation.[152] This pathway is involved in osteoblast‑mediated 
bone formation.[153] It is thought that sclerostin plays a role 
in bone mechanosensibilization.[36] When bone undergoes a 
substantial strain, sclerostin production would be decreased 
and bone could thus increase its formation in response to 
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mechanical stress.[154] As β‑catenin belongs to Wnt cascade 
signaling and as Wnt pathway is thought to be implicated in 
development of VC, it is interesting to investigate a potential 
association between sclerostin levels and VCs.[36] In non‑CKD 
patients, some studies have demonstrated a positive association 
between sclerostin levels and VC,[155,156] whereas in other 
ones, there was not a significant correlation between the two 
parameters.[157,158]

Receptor activator of nuclear factor kappa‑B ligand
RANKL (also known as osteoprotegerin ligand) is a protein 
consisting of 316 amino acids with a molecular weight of 
38 kD. Its expression is also modulated by several cytokines, 
glucocorticoids, and PTH.[77,159] RANKL is produced by 
osteoblast lineage cells and activated T‑cells. It promotes 
osteoclast formation, fusion, differentiation, activation, and 
survival, leading to increased bone resorption and bone 
loss.[160] RANKL stimulates its specific receptor RANK, 
which is expressed in fewer cells such as progenitor cells and 
mature osteoclasts, activated T‑cells, and dendritic cells.[161‑163] 
The activation of RANK by RANKL triggers the NF‑κB 
intracellular signaling cascade. The final stage of RANK 
activation is the NK‑κB translocation into the nucleus, which 
can take place by the classical or alternative pathway.[77] Both 
pathways are regulated by their kinases which are, respectively, 
IKK and IKKα. The NK‑κB translocation to the nucleus 
modulates the expression of different genes, for example, 
BMP4.[164] The biological effects of OPG are the opposite 
of RANKL‑mediated effects because OPG acts as a soluble 
inhibitor that prevents RANKL interaction and the subsequent 
stimulation of its RANK receptor.[165] Many trials have shown 
that VC as well as arterial stiffness and cardiovascular events 
are inversely related to serum RANKL[166‑168] and positively 
related to serum OPG.[90,102,103,114,120,168‑174]

Strategies to Reduce Vascular Calcifications

Any strategy designed to reduce the impact of VCs has to begin 
with primary prevention measures to control cardiovascular risk 
factors. In the particular case of CKD, it is imperative to avoid 
further kidney damage. In this respect, it is crucial to promote a 
healthy lifestyle, with a balanced diet, regular physical exercise, 
smoking abstinence, and low alcohol intake. Once VCs appear, 
secondary prevention must aim to reduce their complications, 
intensifying previous measures, and initiating the appropriate 
drug therapy. Theoretically, any kind of intervention aiming to 
reduce VC should curtail the influence of factors that promote 
calcifications and/or augment the effects of factors that may inhibit 
calcifications.[16] Most strategies to reduce VCs have focused on the 
most common modifiable risk factors such as hyperphosphatemia, 
hypercalcemia, the CaxP product, hyperparathyroidism, smoking, 
hyperlipidemia, and hypertension.

Control of hyperphosphatemia, hypercalcemia, and CaxP 
product
Disturbances in serum phosphorus,  calcium, and 
calcium‑phosphorus product are frequently seen in CKD 

patients and are implicated in the promotion of VC as well as in 
an increased death risk.[16] Due to the fact that dietary restriction 
of phosphorus and intermittent dialysis are not usually 
effective in controlling serum phosphorus, most patients with 
CKD Stage 5 show a high prevalence of hyperphosphatemia 
with its known implications in the pathogenesis of secondary 
hyperparathyroidism, cardiovascular alterations, and mortality. 
As mentioned before, in vivo and in vitro studies shed light 
on the role of phosphorus as promoter of VC, demonstrating 
that the control of phosphorus should be a priority in clinical 
practice. Calcium Pi binders such as calcium acetate and 
calcium carbonate have replaced aluminum hydroxide as the 
most widely prescribed Pi binders. The possible negative role of 
calcium loading from these binders on the progression of VCs 
has led to the abandonment of calcium‑ and aluminum‑based 
Pi‑binders in favor of new calcium‑  or aluminum‑free 
Pi binders (sevelamer hydrochloride and lanthanum carbonate).

These changes in the treatment have reduced hypercalcemic 
adverse events in comparison to calcium‑based binders.[175] 
An experimental study demonstrated that treatment with 
sevelamer in rats decreased renal calcification as compared 
to rats that received calcium carbonate or untreated rats.[176] 
In addition, a clinical trial showed that sevelamer reduced 
the progression of both coronary and aortic calcifications 
compared to calcium carbonate.[177] However, the mechanism 
of the beneficial effect of sevelamer on the progression 
of calcification is still not fully understood. One possible 
mechanism is based on the reduction of the calcium load; 
however, reduced VCs may also result from reductions in 
total and low‑density lipoprotein (LDL) cholesterol, which 
occur during treatment with sevelamer.[175]

Control of secondary hyperparathyroidism
The use of Vitamin D metabolites is a challenging subject that 
still remains controversial. The current treatment of secondary 
hyperparathyroidism in dialysis patients includes suppression 
of PTH with supraphysiologic doses of Vitamin D or its 
analogs. Although it is widely known that a high dosage of 
Vitamin D metabolites favors the onset and progression of VCs, 
several studies have paradoxically demonstrated a long‑term 
beneficial effect of Vitamin D on VCs. Low Vitamin D status is 
associated with a higher prevalence of VCs, bone and mineral 
disturbances, susceptibility to some infections, higher risk of 
autoimmune diseases, some malignancies, and many other 
complications.[178] Observational studies in patients on HD 
and in the general population have also demonstrated a lower 
morbidity and a cardiovascular survival advantage in patients 
who are treated with Vitamin D receptor activators.[179,180] A 
major breakthrough in the management of the calcium Pi 
metabolism of dialysis patients was achieved recently with the 
introduction of calcimimetics. These compounds were the first 
agents introduced to lower PTH with advantageous effects on 
serum calcium and Pi. It has been demonstrated experimentally 
that the calcimimetic R568 reduces aortic calcifications 
and mortality in rats, in which aortic calcifications were 
induced using a high dose of calcitriol.[181] Moreover, another 
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experimental study showed that calcimimetics may even favor 
the regression of VC.[182]

Control of dyslipidemia
Hyperlipidemia, particularly increased LDL cholesterol, has 
been implicated in the progression of VCs. In addition, in 
the general population, the beneficial effect of lowering LDL 
cholesterol levels on the progression of calcification has been 
reported by several groups.[183,184] As mentioned previously, 
patients who were treated with sevelamer showed a significant 
decrease in LDL cholesterol levels,[177] which may explain 
the beneficial effects in the progression of cardiovascular 
calcification. It is known that the rapid progression of coronary 
arterial calcification in HD patients is associated with higher 
triglycerides and lower high‑density lipoprotein cholesterol 
levels.[185]

Control of blood pressure
Hypertension is a modifiable risk factor for VCs in both general 
population and CKD patients. Several studies in ESRD and 
essential hypertension have shown that arterial stiffening is 
an independent predictor of mortality. As arteries become 
stiffer, the pulse wave velocity increases and it is responsible 
for a rapid return of wave reflections from the periphery to the 
ascending aorta during systole, which causes an abnormal rise 
of aortic systolic blood pressure with decreased diastolic blood 
pressure and high pulse pressure. Increased wave reflections 
and high pulse pressure are the independent risk factors for 
mortality of ESRD patients.[22]

Diabetes
Diabetes is a disease that is known to be complicated by 
heterogeneous metabolic risk factors, such as hyperglycemia, 
hyperlipidemia, insulin resistance, glycation, oxidative 
and carbonic stress, and tissue hypoxia. In the nonuremic 
population, VC occurs more frequently in diabetics. In CKD 
patients, VC in diabetics has been reported to be more prevalent 
and more advanced than in nondiabetics.[186] Several studies 
emphasize the importance of glycemic control in the prevention 
of the development and progression of VC in diabetic CKD 
patients.[187]

Conclusion

At present, the ideal marker of VC does not exist. The 
pathophysiological mechanisms underlying this phenomenon 
are still poorly understood. As explained in the introduction, 
calcification can be induced by various situations. Etiologies 
that induce VC in diabetes mellitus patients are likely different 
from those which lead to the same result in CKD patients or 
postmenopausal women. Signaling pathways that are involved 
in VC may then depend on patient’s status. A perfect marker 
would be ideally located on a hypothetical convergence point of 
all these pathological conditions. Thus, it could reflect reliably 
calcification emergence and progression in any situation. 
However, this view is maybe too utopian and simplistic. 
Over the years, study of biomarkers showed a large variety 
of conditions that can modulate vascular microenvironment 

composition, such as bone turnover, inflammation, Vitamin 
D status, or even oxidative stress. Within this vascular 
microenvironment itself, a dense and interconnected network 
of calcification inhibitors and promoters was highlighted as 
shown in Figure 1.  (i) VSMCs undergo differentiation into 
osteoblast‑like cells, in great part because of an intracellular Pi 
increased concentration, likely mediated by the co‑transporter 
Pit‑1, in response to extracellular hyperphosphatemia. (ii) 
Renal failure is one of the major hyperphosphatemia origin 
whereas (iii) FGF‑23 is a factor which tend to moderate it by 
increasing Pi renal excretion. This FGF‑23 action is achieved 
with Klotho’s help. FGF‑23 has other effects described, among 
which noxious ones are also suspected. (iv) Other factors such as 
BMP‑2, absence of PPi (in part, due to ALP activity), oxidative 
stress, inflammatory process, or metabolic disorders are also 
known to be responsive to VSMCs conversion. (v) Calcium 
enhancement also proved to be deleterious, especially by its 
ability to induce Pit‑1 overexpression and also by alteration 
of MGP and Fet‑A actions, two VC inhibitors. (vi) The 
VSMCs conversion will favor excretion of bone‑associated 
proteins, such as OPN, collagen type 1, BMP‑2, and OC and 

(vii) VSMCs will release mineralization‑competent MVs. 
In turn, (viii) BMP‑2 can promote osteoblast differentiation 
and is a potent calcification inducer. (ix) MGP, expressed by 
chondrocytes and VSMCs under normal conditions, inactivates 
BMP‑2. It also binds calcium crystals and inhibits crystal 
growth. Finally, it prevents osteoblastic differentiation too. As 
OC, its activity is Vitamin‑K dependent and can be countered 
by Vitamin‑K antagonists. (x) OC and (xi) osteonectin are 
known to bind calcium/Pi crystal but their accurate actions as 
inducers or inhibitors need to be specified, whereas the (xii)  

PPi inhibiting effect on crystal formation is well known. The 
recent discovery of OC metabolic effects might suggest OC 
is a promoter of VSMCs differentiation into osteoblast‑like 
cells. (xiii) OPN activity would depend on its phosphorylation 
state. Fully phosphorylated OPN would inhibit mineralization 
by blocking hydroxyapatite formation and activating osteoclast 
function while the cleaved one could act as a pro‑inflammatory 
cytokine and pro‑angiogenic factor facilitating vascular 
mineralization. (xiv) OPG is considered as a regulatory factor. 
On one hand, it can prevent VC by blocking bone remodeling 
process in vascular tissue and by neutralizing the pro‑apoptotic 
actions of TRAIL. It might also inhibit ALP activity. On the 
other hand, the inhibition of bone remodeling process by OPG 
could induce a calcium shift into vascular cells. (xv) Fet‑A 
released by the liver inhibits mineralization perhaps through 
CPP formation while (xvi) PTH secreted by parathyroid 
enhances calcification phenomenon, as both low and high 
bone turnover might lead to VC. Under normal conditions, 
there is a balance between all these parameters. It is possible 
that each pathological condition disrupts the balance with its 
own approach. Nevertheless, it seems that all the calcification 
inhibitors do not possess the same potential. OPG serum levels 
appear to be correlated repeatedly to calcification in many 
pathological conditions. However, OPG would not reflect 
the severity of damages as would FGF‑23 do. FGF‑23 levels 
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should be followed up, either upwards or downwards, given the 
suspected duality of the effects of FGF‑23. Low serum Fet‑A 
levels are usually associated with VC but an increased CPP 
fraction of Fet‑A would also be useful to reflect a procalcific 
milieu. Nonfully γ‑carboxylated MGP is associated with VC 
too and might be an interesting marker to monitor patients 
under AVK treatment. OPN would be an attractive marker 
in diseases with inflammatory component such as diabetes 
or autoimmune diseases. Within this category of disease, it 
might help to reclassify asymptomatic subjects with classical 
risk factors into high‑risk group for further examination. In 
population with renal deficiency, particularly susceptible 
to develop VC, the problem becomes even more complex. 
Whether patients undergo dialysis or not, reference values 
will need to be adapted, depending on renal failure severity 
and marker ability to be removed by dialysis. In addition, as 
described earlier, complex interactions exist between different 
actors  (pro or anti‑calcifications) such as PTH, Vitamin D, 
FGF‑23, OPG, sclerostin, acting sometimes through redundant 
signaling pathways such as Wnt/β‑catenin, Runx2/Cbfa1, and 
Notch1‑RBP‑Jκ. Furthermore, these interactions could be 
different according to the stage of CKD.[188] Thus, the stage of 
disease should be taken into account in the interpretation of 
biomarker and/or the combination of biomarkers. As evidenced 
by the present discussion, VC physiopathology is still far from 
being fully elucidated. The role of each biomarker needs to be 
clarified and many studies are still leading to contradictory 
results. In vitro observations are sometimes very different 
from conclusions observed in in vivo studies. Direct effects 
on vasculature and indirect effects mediated by bone turnover 
are not easy to discriminate. When a correlation between the 
serum levels of a calcification marker and calcification is 
clearly showing up, it still remains to determinate whether 
level fluctuations attest a noxious effect of the biomarker or if 
they highlight a compensatory process or even solely reflect 
phenomenon as bystander. Qualities that would be appreciated 
for selecting a good marker depend on its capacities to achieve 
clinical goals, particularly its ability to select high‑risk patients 
for further investigation, to make a reliable calcification 
assessment, to provide a prognostic, to help in treatment choice, 
or to follow‑up the treatment efficiency. Given importance to 
assess and control mineralization process, it is essential to keep 
going on building up more and more knowledge.
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